首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6708篇
  免费   1822篇
  国内免费   987篇
  2024年   13篇
  2023年   435篇
  2022年   174篇
  2021年   326篇
  2020年   675篇
  2019年   695篇
  2018年   599篇
  2017年   593篇
  2016年   545篇
  2015年   561篇
  2014年   536篇
  2013年   573篇
  2012年   449篇
  2011年   398篇
  2010年   368篇
  2009年   386篇
  2008年   349篇
  2007年   271篇
  2006年   211篇
  2005年   207篇
  2004年   175篇
  2003年   126篇
  2002年   129篇
  2001年   108篇
  2000年   124篇
  1999年   81篇
  1998年   65篇
  1997年   56篇
  1996年   43篇
  1995年   40篇
  1994年   32篇
  1993年   35篇
  1992年   17篇
  1991年   25篇
  1990年   15篇
  1989年   12篇
  1988年   5篇
  1987年   6篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   13篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1970年   1篇
  1958年   4篇
排序方式: 共有9517条查询结果,搜索用时 33 毫秒
61.
62.
63.
气候变化和大规模的生态恢复使中国北方旱区植被发生了显著变化,量化气候变化和人类活动对植被动态的相对贡献,对于旱区生态系统管理和应对未来气候变化具有重要意义。目前,中国北方旱区植被变化影响因素的时间动态(2000年大规模生态恢复工程实施前后)和空间异质性(沿干旱梯度)仍需进一步的定量研究。基于多源数据,采用趋势分析、偏相关分析和随机森林模型等方法,分析了1981-2018年中国北方旱区气候和植被的时空变化规律,量化了2000年前后气候变化和人类活动对植被动态的相对贡献并分析其在干旱梯度上的空间差异性。结果表明:(1)1981-2018年期间,中国北方旱区的叶面积指数(LAI)平均增加速率为(0.0037±0.0443) a-1,且增加速率沿干旱梯度增大。2000年前仅10.46%(P<0.05)的地区显著变绿,而2000年后达到36.84%,且植被变绿主要归因于非树木植被。(2)2000年后降水对植被变绿的正效应在不同干旱梯度均增加,而在半干旱区和亚湿润干旱区,温度对植被变绿由正向促进转为负向抑制,而辐射在干旱区由负效应转向正效应。(3)2000年前后,气候变化均主导着植被的动态,贡献率分别为96.07%和73.72%,人类活动的贡献在2000年后进一步增强(从3.93%增加到26.28%),且沿着干旱梯度而增加,其中人类活动对植被变绿的贡献在半干旱地区增加最显著(+0.0289 m2 m-2 a-1P<0.05)。研究结果可为未来气候变化下中国北方旱区的植被恢复和可持续发展提供科学依据。  相似文献   
64.
65.
Aim The question of how much of the shared geographical distribution of biota is due to environmental vs. historical constraints remains unanswered. The aim of this paper is to disentangle the contribution of historical vs. contemporary factors to the distribution of freshwater fish species. In addition, it illustrates how quantifying the contribution of each type of factor improves the classification of biogeographical provinces. Location Iberian Peninsula, south‐western Europe (c. 581,000 km2). Methods We used the most comprehensive data on native fish distributions for the Iberian Peninsula, compiled from Portuguese and Spanish sources on a 20‐km grid‐cell resolution. Overall, 58 species were analysed after being categorized into three groups according to their ability to disperse through saltwater: (1) species strictly intolerant of saltwater (primary species); (2) species partially tolerant of saltwater, making limited incursions into saltwaters (secondary species); and (3) saltwater‐tolerant species that migrate back and forth from sea to freshwaters or have invaded freshwaters recently (peripheral species). Distance‐based multivariate analyses were used to test the role of historical (basin formation) vs. contemporary environmental (climate) conditions in explaining current patterns of native fish assemblage composition. Cluster analyses were performed to explore species co‐occurrence patterns and redefine biogeographical provinces based on the distributions of fishes. Results River basin boundaries were better at segregating species composition for all species groups than contemporary climate variables. This historical signal was especially evident for primary and secondary freshwater fishes. Eleven biogeographical provinces were delineated. Basins flowing to the Atlantic Ocean north of the Tagus Basin and those flowing to the Mediterranean Sea north of the Mijares Basin were the most dissimilar group. Primary and secondary freshwater species had higher province fidelity than peripheral species. Main conclusions The results support the hypothesis that historical factors exert greater constraints on native freshwater fish assemblages in the Iberian Peninsula than do current environmental factors. After examining patterns of assemblage variation across space, as evidenced by the biogeographical provinces, we discuss the likely dispersal and speciation events that underlie these patterns.  相似文献   
66.
The distributions of a wide range of taxonomic groups are expanding polewards   总被引:11,自引:1,他引:10  
Evidence is accumulating of shifts in species' distributions during recent climate warming. However, most of this information comes predominantly from studies of a relatively small selection of taxa (i.e., plants, birds and butterflies), which may not be representative of biodiversity as a whole. Using data from less well‐studied groups, we show that a wide variety of vertebrate and invertebrate species have moved northwards and uphill in Britain over approximately 25 years, mirroring, and in some cases exceeding, the responses of better‐known groups.  相似文献   
67.
Disentangling the relative roles of biotic and abiotic forces influencing forest structure, function, and local community composition continues to be an important goal in ecology. Here, utilizing two forest surveys 20‐year apart from a Central American dry tropical forest, we assess the relative role of past disturbance and local climatic change in the form of increased drought in driving forest dynamics. We observe: (i) a net decrease in the number of trees; (ii) a decrease in total forest biomass by 7.7 Mg ha?1 but when calculated on subquadrat basis the biomass per unit area did not change indicating scale sensitivity of forest biomass measures; (iii) that the decrease in the number of stems occurred mainly in the smallest sizes, and in more moist and evergreen habitats; (iv) that there has been an increase in the proportion of trees that are deciduous, compound leaved and are canopy species, and a concomitant reduction in trees that are evergreen, simple‐leaved, and understory species. These changes are opposite to predictions based on recovery from disturbance, and have resulted in (v) a uniform multivariate shift from a more mesic to a more xeric forest. Together, our results show that over relatively short time scales, community composition and the functional dominance may be more responsive to climate change than recovery to past disturbances. Our findings point to the importance of assessing proportional changes in forest composition and not just changes in absolute numbers. Our findings are also consistent with the hypothesis that tropical tree species exhibit differential sensitivity to changes in precipitation. Predicted future decreases in rainfall may result in quick differential shifts in forest function, physiognomy, and species composition. Quantifying proportional functional composition offers a basis for a predictive framework for how the structure, and diversity of tropical forests will respond to global change.  相似文献   
68.
In 1985 we resurveyed the sites on the Marlborough Downs in southern England at which Cain and Currey in 1960/61 sampled Cepaea snails and thence introduced the term 'area effects' to describe large areas of uniform morph frequency. Some sites no longer harboured Cepaea and at others the species composition had changed, with a general spread of Cepaea hortensis at the expense of Cepaea nemoralis. The majority, however, permitted comparison of morph frequencies between the two surveys. In C. nemoralis, we detected a significant overall decrease in the frequency of the brown morph and estimate selection as 5–9% per generation. There was no apparent change in frequencies of banded morphs. In C. hortensis we detected a significant overall increase in the frequency of unbanded shells (1–3% selection per generation) and an almost significant decrease in the frequency of fusions within the banded class. There was insufficient colour polymorphism in C. hortensis to allow analysis of colour morph frequencies. These changes—all in the direction of reduced absorption of solar energy—resemble others detected in both species at other localities in southern England. Possible explanations include large-scale climatic effects and changes in vegetation.  相似文献   
69.
Climatic anomalies may produce, or accelerate, geographic range expansions of species limited by temperature or other climatic variables. Most such expansions are only temporary, before the prevailing climatic conditions drive the founder populations extinct. In contrast, here, we report a recent rapid shift of the range limit during the record hot summer of 2003 in southern Europe that has the potential to be both permanent, and to have important implications on species range dynamics in general. The winter pine processionary moth (Thaumetopoea pityocampa), an important pine defoliator whose larvae feed in colonies during the winter, is limited in its distribution by winter temperatures. In the last three decades, warmer winters have led to a gradual but substantial expansion of its range both latitudinally and altitudinally. In the summer of 2003, T. pityocampa underwent an extraordinary expansion to high elevation pine stands in the Italian Alps; its altitudinal range limit increased by one third of the total altitudinal expansion over the previous three decades. In an experiment, we found flight activity of newly emerged females to increase with temperature. By determining a threshold temperature for flight take‐offs under controlled conditions, we calculated that the nights above the threshold temperature were over five times more frequent, and considerably warmer, at the range limit in 2003 than in an average year. We therefore attribute the colonization of extreme, high‐elevation sites to increased nocturnal dispersal of females during the unusually warm night temperatures in June – August 2003. Importantly, the colonies established at extreme sites survived the winter and produced offspring in 2004, although the range did not expand further because of low night temperatures that year. We discuss several life‐history characteristics of T. pityocampa that maximize the likelihood of population persistence at the new range limit. As global warming continues and climatic anomalies are predicted to become more frequent, our results draw attention to the importance of extreme climatic events in the range formation of phytophagous insects.  相似文献   
70.
Climate warming and associated sea ice reductions in Antarctica have modified habitat conditions for some species. These include the congeneric Adélie, chinstrap and gentoo penguins, which now demonstrate remarkable population responses to regional warming. However, inconsistencies in the direction of population changes between species at different study sites complicate the understanding of causal processes. Here, we show that at the South Orkney Islands where the three species breed sympatrically, the less ice‐adapted gentoo penguins increased significantly in numbers over the last 26 years, whereas chinstrap and Adélie penguins both declined. These trends occurred in parallel with regional long‐term warming and significant reduction in sea ice extent. Periodical warm events, with teleconnections to the tropical Pacific, caused cycles in sea ice leading to reduced prey biomass, and simultaneous interannual population decreases in the three penguin species. With the loss of sea ice, Adélie penguins were less buffered against the environment, their numbers fluctuated greatly and their population response was strong and linear. Chinstrap penguins, considered to be better adapted to ice‐free conditions, were affected by discrete events of locally increased ice cover, but showed less variable, nonlinear responses to sea ice loss. Gentoo penguins were temporarily affected by negative anomalies in regional sea ice, but persistent sea ice reductions were likely to increase their available niche, which is likely to be substantially segregated from that of their more abundant congeners. Thus, the regional consequences of global climate perturbations on the sea ice phenology affect the marine ecosystem, with repercussions for penguin food supply and competition for resources. Ultimately, variability in penguin populations with warming reflects the local balance between penguin adaptation to ice conditions and trophic‐mediated changes cascading from global climate forcing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号